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Abstract

Graph contrastive learning has gained significant
progress recently. However, existing works have
rarely explored non-aligned node-node contrast-
ing. In this paper, we propose a novel graph con-
trastive learning method named RoSA that focuses
on utilizing non-aligned augmented views for node-
level representation learning. First, we leverage
the earth mover’s distance to model the minimum
effort to transform the distribution of one view
to the other as our contrastive objective, which
does not require alignment between views. Then
we introduce adversarial training as an auxiliary
method to increase sampling diversity and enhance
the robustness of our model. Experimental re-
sults show that RoSA outperforms a series of graph
contrastive learning frameworks on homophilous,
non-homophilous and dynamic graphs, which val-
idates the effectiveness of our work. To the best
of our awareness, RoSA is the first work focuses
on the non-aligned node-node graph contrastive
learning problem. Our codes are available at:
https://github.com/ZhuYun97/RoSA

1 Introduction

Graph representation learning, which aims to learn low
dimension representations of nodes and edges for down-
stream tasks, has become a popular method when deal-
ing with graph-domain data recently. Among all
these methods, unsupervised graph contrastive learning
has received considerable research attention. It com-
bines the new research trend of graph neural net-
work (GNN) [Kipf and Welling, 2017] and contrastive self-
supervised learning [Oord et al., 2018; Chen er al., 2020;
Grill et al., 2020] methods, and has achieved promis-
ing results on many graph-based tasks [Zhu et al., 2020c;
Velickovic et al., 2019; You et al., 2020].

Contrastive learning aims to maximize the agreement be-
tween jointly sampled positive views and draw apart the
distance between negative views, where in graph domain
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Figure 1: An illustration of different levels of contrasting methods,
where G-G means graph-graph, N-G means node-graph and N-N
means node-node contrasting level. We only show how a positive
pair looks like, where the central node of subgraph is surrounded by
a black circle. The number on nodes corresponds to their indices in
the original full graph, and the color represents their labels.

we refer augmented subgraph as a “view”. Based on the
scale of two contrasted views, graph contrasting learning
can be classified as node-node, node-graph, and graph-graph
level [Wu er al., 2021]. From another perspective, a pair of
contrasted views is recognized as aligned or unaligned de-
pending on the difference of their node sets. Two aligned
views must have identical node indices, except the struc-
ture and some features may differ, and two unaligned views
can have different node sets. Figure 1 gives an illustrative
overview according to this taxonomy.

[Zhu et al., 20214a] indicates that for node-level tasks such
as node classification, applying node-node contrasting can
obtain the best performance gain. However, previous work
for node-node graph contrastive learning all contrast nodes
in the aligned scenario which may hinder the flexibility and
variability of sampled views and restrict the expressive power
of contrastive learning. Moreover, there exist certain circum-
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stances where aligned views are unavailable, for instance the
dynamic graphs where the nodes may appear/disappear as
time goes by, and the random walk sampling where the views
are naturally non-aligned. Compared with aligned node-node
contrasting, the non-aligned scenario is able to sample differ-
ent nodes and their relations more freely, which will assist the
model in learning more representative and robust features.

However, applying non-aligned node-node contrasting
faces three challenges. First, how to design sub-sampling
methods that can generate unaligned views while maintain-
ing semantic consistency? Second, how to contrast two non-
aligned views even the number of nodes and correspondence
between nodes are inconsistent? Third, how to boost the per-
formance meanwhile enhance the robustness of model for un-
supervised graph contrastive learning? None of them have
been satisfactorily answered by previous work.

To tackle the challenges discussed above, we propose
RoSA: a Robust Self-Aligned framework for node-node
graph contrastive learning. Firstly, we utilize random walk
sampling to obtain augmented views for non-aligned node-
node contrastive learning. Specifically, for a given graph, we
sample a series of subgraphs based on a central node, and
two different views of the same central node are treated as a
positive pair, while views across different central nodes are
selected as negative pairs. Note that even positive pairs are
not necessarily aligned. Secondly, inspired by the message
passing mechanism of graph neural networks, the node repre-
sentation can be interpreted as the result of distribution trans-
formation of its neighboring nodes. Intuitively, for a pair
of views, we leverage the earth mover’s distance (EMD) to
model the minimum effort to transform the distribution of one
view to the other as our objective, which can implicitly align
different views and capture the changes in their distributions.
Thirdly, we introduce unsupervised adversarial training that
explicitly operates on node features to increase the diversity
of samples and enhance the robustness of our model. To the
best of our knowledge, this is the first work that fills the blank
in non-aligned node-node graph contrastive learning.

Our main contributions are summarized as follows:

* We propose a robust self-aligned contrastive learning
framework for node-node graph representation learning
named RoSA. To the best of our knowledge, this is the
first work dedicated to solving non-aligned node-node
graph contrastive learning problems.

* To tackle the non-aligned problem, we introduce a novel
graph-based optimal transport algorithm, g-EMD, which
does not require explicit node-node correspondence and
can fully utilize graph topological and attributive infor-
mation for non-aligned node-node contrasting. More-
over, to compensate for the possible information loss
caused by non-aligned sub-sampling, we propose a non-
trivial unsupervised graph adversarial training to im-
prove the diversity of sub-sampling and strengthen the
robustness of the model.

* Extensive experimental results on various graph settings
achieve promising results and outperform several base-
line methods by a large margin, which validates the ef-
fectiveness and generality of our method.

2 Related Works

2.1 Self-Supervised Graph Representation
Learning

First appeared in the field of computer vi-
sion [Oord et al., 2018; He et al., 2020; Grill et al., 2020]
and natural language processing [Gao eral.,2021], self-
supervised learning showed promising performance in
various tasks and applying it to graph domain quickly
became a research hot-spot. GraphCL [You et al., 2020] uses
different augmentations and applies a readout function to
obtain graph-graph level representations, then optimizes the
InfoNCE loss, which can be mathematically proved to be the
lower bound of mutual information. Inspired by Deep Info-
Max [Hjelm et al., 2019], DGI [Velickovic et al., 2019] max-
imizes the mutual information between patch and graph rep-
resentations, which is node-graph level contrasting. Recently,
node-node level methods like GMI [Peng et al., 2020],
GRACE [Zhu et al., 2020c], GCA [Zhu et al., 2021b] and
BGRL [Thakoor et al., 2021] show superior performance
on node classification task. Unlike DGI, GMI removes the
readout function and maximizes the MI between inputs and
outputs of the encoder at the node-node level. With graph
augmentation methods, GRACE focuses on contrasting
aligned views using different nodes as the negative pairs, and
the same nodes from different views are regarded as positive
pairs, where each positive pair should be aligned first. GCA
is similar to GRACE but with adaptive data augmentation.
BGRL is a negative-sample-free method which borrows the
idea from BGRL [Grill et al., 2020].

Previous works that involve graph level contrasting, usu-
ally have a readout function to obtain whole graph representa-
tion, which are naturally aligned, but when it comes to node-
node level contrasting, they always explicitly align nodes for
positive pairs. The work of non-aligned node-node graph
contrastive learning has not yet been explored.

2.2 Adversarial Training

Adversarial training (AT) has been found useful to im-
prove the model’s robustness. AT is a min-max train-
ing process, which aims to maintain the consistency of the
model’s output before and after adding adversarial pertur-
bations. Previous works solve the adversarial perturbations
from many different perspectives. [Goodfellow et al., 2015]
gives a linear approximation of the perturbation under L2
norm (i.e.Fast Gradient method). Projected Gradient De-
scent method [Madry et al., 2018] tries to obtain a more pre-
cise perturbation in an iterative manner, but it takes more
time, [Shafahi et al., 2019; Zhu er al., 2020a] provide more
efficient methods. Lately, [Kong et al., 2020] adopts these
methods into the graph domain in a supervised manner. How-
ever, unsupervised adversarial training for graphs is still un-
explored. In this paper, we adopt AT into our contrastive
method to improve the robustness of the model in an unsu-
pervised manner.

3 Method

In this chapter, we will introduce the framework of RoSA.
Figure 2 gives an overview of RoSA.
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Figure 2: The overview of our proposed method: RoSA. The input is a series of subgraphs sampled from a full graph, where different random
walk views from the same central node are recognized as positive pairs and views from different central nodes are treated as negative pairs.
Then the subgraphs are fed into the encoder and projector to obtain node embeddings for contrasting. The self-aligned EMD-based contrastive
loss will maximize the mutual information (MI) between positive pairs and minimize MI between negative pairs, guiding the model to learn
rich representations. Besides, introducing adversarial training into this workflow enhances the robustness of the model.

3.1 Preliminaries

Given a graph G = (V, &), where V is the set of N nodes and
€ is the set of M edges. Also use G = (X, A) to represent
graph features, where X = {x;,xs,...,xy} € RV*? rep-
resents node feature matrix, each node’s feature dimension is
d and can be formulated as x; € R%, A € RV*V represents
the graph adjacency matrix, where A; ; = 1 if an edge exists
between node ¢ and j, else A; ; = 0. For subgraph sampling,
each node ¢ will be treated as central node to get subgraph
G®. An augmented view of subgraph G is represented as

G ,(f) where subscript k denotes the k-th augmented view.

3.2 Non-Aligned Node-Node Level Sub-Sampling

It has been proven that well-designed data augmentation
plays a vital role in boosting the performance of contrastive
learning [You er al., 2020]. However, different from the CV
and NLP domain, where data is organized in a Euclidean
fashion, graph data augmentation methods need to be re-
designed and carefully selected.

It is worth noting that in this work, for a positive pair, we
need to get different sets of nodes while preserving the consis-
tency of their semantic meanings. Based on such a premise,
we propose to utilize random walk with restart sampling as an
augmentation method that selects nodes randomly and gener-
ates unaligned views. Specifically, random walk sampling
starts from the central node v and generates a random path
with a given step size s. Besides, at each step the walk re-
turns to central node v with a restart probability .. The step
size s should not be too large because we want to capture the
local structure of the central node. Lastly, edge dropping and
feature masking [Zhu et al., 2020c] are applied on subgraphs.

3.3 g-EMD: A Self-aligned Contrastive Objective

After obtaining two unaligned augmented views, we define
a contrastive objective that measures the agreement of two
different views. Prior arts mostly use cosine similarity as
a metric to evaluate how far two feature vectors drift apart.

While under our setting, two views may have different and
unaligned nodes, where a simple cosine similarity loses its
availability. Hence we propose to leverage the earth mover’s
distance (EMD) as our similarity measure.

EMD [Rubner et al., 2000; Zhang et al., 2020;
Liu et al., 2020] is the measure of the distance between
two discrete distributions, it can be interpreted as the min-
imum cost to move one pile of dirt to the other. Although
prior work has introduced EMD to the CV domain, the
adaptation in the graph domain has not been explored yet.
Moreover, according to the characteristics of graph data,
we also take topology distance into consideration while
computing the cost matrix. Through a non-trivial solution,
we combine the vanilla cost matrix and topology distance to
obtain a rectified cost matrix which makes the cost related to
the node similarity and the distance in the graph topology.

The calculation of g-EMD can be formulated as a linear
optimization problem. In our case, the two augmented views
have feature maps X € RM*4 and Y € RV*4 respectively,
the goal is to measure the distance to transform X to Y. Sup-
pose for each node x; € R4, it has ¢, units to transport, and
node y,; € R? has T; units to receive. For a given pair of
nodes x; and Y the cost of transportation per unitis D;;, and
the amount of transportation is I'; ;. With above notations, we
can define the linear optimization problem as follows:

M N
i D;,;Ti;, 1
min) > DiTy M
v ]
sty >0,i=1,2,..,M,j=1,2,..,N

M
> Tiyj=r;j=12..,N

N
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J

where t € R™ and r € RY are marginal weights for T re-
spectively.



The set of all possible transportation matrices I" can be de-
fined as

(t,r) = {T e RM™*NT1y = t, T 1y =1}, (2)

where 1 is all-one vector with corresponding size, and TI(t, r)
is the set of all possible distributions whose marginal weights
aret and r.

And the cost to transfer x; to y, is defined as

szyj
[l [[|y; 17

which indicates that nodes with similar representations pre-
fer to generate fewer matching cost between each other. In
addition to directly using node representations dissimilarity
matrix as a distance matrix, we also take the topology dis-
tance ¥ € RM>*¥ (the smallest hop count between each pair
of nodes) into consideration. Nodes are close in topology
structure which indicates they may contain similar semantic
information. How to combine the representation dissimilarity
matrix and topology distance is not a trivial problem. In order
not to adjust the original cost matrix D drastically, we adopt
sigmoid function S with temperature on topology distance to
get re-scale factors S € [0.5, 1]M*N:

1
Sij =95V, ) =

1+ e Yis/m’
where 7 > 1 is the temperature factor to control the rate of
curve change. We set 7 as 2 empirically, and leave the choice
of different of re-scale function and the tuning of different
temperature factors in future work. With the re-scale factors
S, we can update the cost matrix by

D=DoS, 5)

D, =1- 3)

“

where o is Hadamard product. In this way, we combine both
topology distance and node representation dissimilarity ma-
trix into distance matrix.

As D is fixed according to distributions X, Y and topol-
ogy distance, to get g-EMD we need to find the optimal
I. To solve the optimal T, we utilize Sinkhorn Algo-
rithm [Cuturi, 2013] by introducing a regularization term:

DT~ 1), (©)
—_——

regularization term

g-EMD(X,Y,S) = lyg%(l",D}p +

where (, ) denotes Frobenius inner product, and ) is a hyper-
parameter that controls the strength of regularization. With
this regularization, the optimal I' can be approximated as:

T = diag(v)Pdiag(u), @)

where P = ¢=*P_ and v, u are two coefficient vectors whose

values can be iteratively updated as

t.
T — (8)
Z] 1 P'Uu
witl = T

u; t+1°
Zz 1 Pijv;

Then the question lies in how to get marginal weights t and
r. The weight represents a node’s contribution in comparison
of two views, where a node should have larger weight if its
semantic meaning is close to the other view. Based on this
hypothesis, we define the node weight as dot product between
its feature and the mean pooling feature from the other set:

r Xy 5 0}, ©)

t; = max{x; -

T Zz 1T O}
M
where max is to make sure all weights are non-negative, and

then both views will be normalized to ensure having the same
amount of features to transport.

With optimal transportation amount T', we obtain:

¢-EMD(X,Y,S) =

r; = max{y; -

(T, D)p. (10)

Now we can leverage EMD as the distance measure to con-
trastive loss objective. For any central node v; and its aug-
mented graph views (G, G{"), an encoder f5 (e.g. GNN)

is applied to get embeddings Hg R

and Hé 2 respectively, then
a linear projector g,, is applied on top of that to get Zgl) and

Zéi) to improve generality for downstream tasks as indicated
in [Chen et al., 2020]. Formally, we define the EMD-based
contrastive loss for node v; as
0z, 2y =
es(21.,287)) /7

Zfevzl (@ 2N/ 4 Zk 1 Lkt ]es(z“) 2

)
1)

where s(x,y) is a function that calculates the similarity be-
tween x and y, here we use 1 — EMD(x,y) to replace
s(x,y); 1 is an indicator function which returns 1 if i # k
otherwise returns 0; and 7 is temperature parameter. Adding
all nodes in AV, the overall contrastive loss is given by:

J = % i [e (zg“, zg”) +0 (zg“, zg“ﬂ a2
=1

We summarize our proposed algorithm for non-aligned
node-node contrastive learning in Appendix A.

—log(

3.4 Unsupervised Adversarial Training

Adversarial training can be considered as an augmentation
technique which aims to improve the model’s robustness.
[Kong et al., 2020] has empirically proven that graph adver-
sarial augmentation on feature space can boost the perfor-
mance of GNN under a supervised manner. Such a method
can be modified for graph contrastive learning as

M—-1
1 i i
I}}HHE(X( i) X;i))ND [M glea%it J (Xg) + 515, Xé )) ’
t=0
(13)



where 6, w are the parameters of encoder and projector, D is
data distribution, Z, = Bx s, (at)NBx (€) where € is the per-
turbation budget. For efficiency, the inner loop runs M times,
the gradient of §, 6;_; and w;_; will be accumulated in each
time, and the accumulated gradients will be used for updat-
ing 0,1 and w;_ during outer update. Equipped with such
adversarial augmentation, we complete a more robust self-
aligned task. The energy is hopefully transferred between
nodes belonging to different categories during max-process,
and min-process will remedy such a bad situation to make
the alignment more robust. In this way, the adversarial aug-
mentation increases the diversity of samples and improves the
robustness of the model.

4 Experiments

We conduct extensive experiments on ten public benchmark
datasets to evaluate the effectiveness of RoSA. We use RoSA
to learn node representations in an unsupervised manner and
assess their quality by a linear classifier trained on top of that.
Some more detailed information about datasets and experi-
mental setup can be found in Appendix B, C.

4.1 Datasets

We conduct experiments on ten public benchmark datasets
that include four homophilous datasets (Cora, Citeseer,
Pubmed and DBLP), three non-homophilous datasets (Cor-
nell, Wisconsin and Texas), two large-scale inductive datasets
(Flickr and Reddit) and one dynamic graph dataset (CIAW)
to evaluate the effectiveness of RoSA. Details of datasets can
be found in Appendix B.

4.2 Experimental Setup

Models For small-scale datasets, we apply a two-layer
GCN as our encoder fp and for the large-scale datasets
(Flickr and Reddit), we adopt a three-layer GraphSAGE-
GCN [Hamilton ef al., 2017] with residual connections as
the encoder following DGI [Velickovic et al., 2019] and
GRACE [Zhu et al.,2020c]. The formulas of encoders
can be found in Appendix C. Specifically, similar to
[Chen er al., 20201, a projection head which comprises a two-
layer non-linear MLP with BN is added on top of the encoder.
Detailed hyperparameter settings are in Appendix C.

Baselines We compare RoSA with two node-graph
constrasting methods DGI [Velickovic et al., 2019], SUBG-
CON [Jiao et al., 2020]), and four node-node methods
GMI [Peng et al.,2020], GRACE [Zhu et al., 2020c],
GCA [Zhu et al., 2021b] and BGRL [Thakoor et al., 2021].

4.3 Results and Analysis

Results for homophilous datasets Table 1 shows the node
classification results on four homophilous datasets, some of
the reported statistics are borrowed from [Zhu et al., 2020c].
Experiment results show that N-N methods surpass N-G on
node classification tasks. And RoSA is superior to all base-
lines and achieves state-of-the-art performance, and even sur-
passes the supervised method (GCN), which proves the ef-
fectiveness of leveraging EMD-based contrastive loss and ad-
versarial training in non-aligned node-node scenarios. Differ-
ent from other node-node methods that train on full graphs,

Method Level Cora Citeseer Pubmed DBLP
Raw Features - 64.8 64.6 84.8 71.6
DeepWalk - 67.2 432 65.3 75.9
GCN - 82.8 72.0 84.9 82.7
DGI N-G  82.6+04 68.8+0.7 86.0+0.1 83.2+0.1
SUBG-CON* N-G  82.6x0.9 69.2+1.3 84.3+x0.3 83.8+0.3
GMI N-N  82.9+1.1 70.4+0.6 84.8+0.4 84.1+0.2
GRACE N-N 83304 72.1+0.5 86.7+0.1 84.2+0.1
GCA N-N  83.840.8 72.2+0.7 86.9+0.2 84.3+0.2
BGRL N-N  83.8+1.6 72.3+0.9 86.0+0.3 84.1+0.2
RoSA N-N  84.5+0.8 73.4+0.5 87.1+0.2 85.0+0.2

Table 1: Summary of classification accuracy of node classifica-
tion tasks on homophilous graphs. The second column represents
the contrasting mode of methods, N-G stands for node-graph level,
and N-N stands for node-node level. For a fair comparison, in
SUBG-CON* we replace the original encoder with the encoder used
in our paper and apply the same evaluation protocol as ours.

our method is trained on various non-aligned subgraphs,
which brings more flexibility but also non-alignment chal-
lenge. RoSA learns more information from the challenging
pretext task. The visualization of cost matrix and transporta-
tion matrix in EMD during training is in Appendix E.

Methods Cornell Wiscons.  Texas \ Cornell Wiscons.  Texas

DGI 56.3+4.7 50.9+5.5 56.9+6.3 | 58.1+4.1 52.1£6.3 57.8+5.2
SUBG-CON  54.1+6.7 48.3+4.8 56.9+6.9 | 58.746.8 59.0+7.8 61.1£7.3
GMI 58.1+4.0 529442 57.8+5.9 | 69.6£5.3 70.8£5.2 69.6+5.3
GRACE 58.2+#4.1 54.3+7.1 589447 | 72.3x53 74155 69.8+7.2
RoSA 59.3+3.6 55.1x4.7 60.3+4.5 | 743262 77.1¥4.3 71.1%6.6

Table 2: Non-homophilous node classification using GCN (left) and
MLP (right).

Results for non-homophilous dataset Previous works
have shown that GCN performs poorly on non-homophilous
graphs [Pei et al., 2020; Zhu et al., 2020b], because there are
a lot of high-frequency signals on such graphs, and GCN is
essentially a low-pass filter, where a lot of useful information
will be filtered out. Since the design of the encoder is not
the focus of our work, we use both GCN and MLP as our
encoders in this part.

We compare the performance of our model with DGI,
SUBG-CON, GMI, GRACE using either GCN or MLP as
encoder, see Table 2. From the statistics, we can summarize
three major conclusions: Firstly, the overall performance of
SUBG-CON and DGI lags behind the others. This is because
SUBG-CON and DGI are the node-graph level contrasting
methods that maximize the mutual information between cen-
tral node representation and its contextual subgraph repre-
sentation, and under the non-homophilous circumstance, the
contextual graph representation gathers highly variant fea-
tures from different kinds of nodes, which renders wrong and
meaningless signals.

Secondly, with the same method, the MLP version per-
forms significantly better than its GCN counterpart, which
confirms the statement that MLP is more suitable for non-
homophilous graphs. Furthermore, we can observe that the
performance gap between node-global and node-node meth-
ods widens when using MLP as the encoder. We suspect such
a phenomenon is caused because the GCN encoder loses a



large amount of information under a non-homophilous set-
ting and makes the effort of other modules in vain.

Thirdly and most importantly, RoSA outperforms other
benchmarks on all three datasets, no matter the choice of the
encoder, which validates the effectiveness of RoSA for non-
homophilous graphs. We speculate that RoSA will tighten the
distance of nodes of the same class.

Result for inductive learning on large-scale datasets The
experiments conducted above are all under the transductive
setting. In this part, the experiments are under the induc-
tive setting where tests are conducted on unseen or untrained
nodes. The micro-averaged F1 score is used for both of these
two datasets. The results are shown in Table 3, we can see
that RoSA works well on large-scale graphs under induc-
tive setting and reaches state-of-the-art performance. An ex-
planation is DGI, GMI and GRACE can not directly work
on full graphs, they use the sampling strategy proposed by
[Hamilton et al., 2017] in their original work. However, we
adopt subsampling (random walk) as our augmentation tech-
nique which means our method can seamlessly work on these
large graphs. Furthermore, our pretext task is designed for
such subsampling which is more suitable for large graphs.

Methods Flickr Reddit
Raw features 20.3 58.5
DeepWalk 279 324
FastGCN 48.1£0.5 89.5+1.2
GraphSAGE 50.1+1.3 92.1+1.1
Unsup-GraphSAGE 36.5 90.8
DGI 42.9+0.1 94.0+0.1
GMI 44.5+0.2 95.0+0.0
GRACE 48.0£0.1 94.2+0.0
RoSA 51.2+0.1 95.2+0.0

Table 3: Result for inductive learning on large-scale datasets.

Results for dynamic graphs dataset In addition, we also
test our method on dynamic graphs. For the contrastive task,
we consider the adjacent snapshots as positive views because
the evolution process is generally “smooth”, and the snap-
shots far away from the anchor are considered as negative
views. In CIAW, each snapshot maintains all nodes appeared
in the timeline, however, in real-world scenarios, the addition
or deletion of nodes happens as time goes by. So in CIAW*,
we remove isolated nodes in each snapshot to emulate such a
situation. Note that GRACE can not work on CIAW* because
CIAW* creates a non-aligned situation, while GRACE is in-
herently an aligned method. From the statistics in Table 4,
RoSA surpasses other competitors and can work well in both
situations. Currently, we simply use static GNN encoder with
discrete-time paradigms which can be replaced with temporal
GNN encoders, and we will leave it for future work.

4.4 Ablation Study

To prove the effectiveness of the design of RoSA, we conduct
ablation experiments masking different components under the

CIAW CIAW*
GraphSAGE 64.0+£8.5 69.7£10.1
GRACE 65.3£7.9 -
RoSA 67.6£7.0 73.249.3

Table 4: Node classification using GraphSAGE on dynamic graphs.
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Figure 3: Abalation study on RoSA

same hyperparameters. First we replace the EMD-based In-
foNCE loss with a regular cosine similarity metric, repre-
sented as RoSA w/o EMD (In order to make it computable
under such situation, we restrict the same amount of nodes for
contrasted views). Second we use the vanilla cost matrix for
EMD, named as RoSA w/o TD. Then we remove the adver-
sarial training process, denoted as RoSA w/o AT. Finally, we
adopt aligned views contrasting instead of the original non-
aligned random walking, named as RoSA Aligned. For a fair
comparison, we keep other hyperparameters and the training
scheme same. The results is summarized in Figure 3. As we
can see, the performance degrades without either EMD, ad-
versarial training or rectified cost matrix, which indicates the
effectiveness of the corresponding components. Furthermore,
compared to aligned views, the model achieves comparable
or even better results under the non-aligned condition, which
demonstrates that our model, to a certain degree, solves the
non-aligned graph contrasting problem. The experiments of
sensitivity analysis are in Appendix D.

5 Conclusion

In this paper, we propose a robust self-aligned framework
for node-node graph contrastive learning, where we design
and utilize the graph-based earth mover’s distance (g-EMD)
as a similarity measure in the contrastive loss to avoid ex-
plicit alignment between contrasted views. Then we intro-
duce unsupervised adversarial training into graph domain to
further improve the robustness of the model. Extensive ex-
periment results on homophilous, non-homophilous and dy-
namic graphs datasets demonstrate that our model can effec-
tively be applied to non-aligned situations and outperform
other competitors. Moreover, in this work we adopt simple
random walk with restart as the subsampling technique, and
RoSA may achieve better performance if equipped with more
powerful sampling methods in future work.
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A. Algorithm

The steps of the procedure of our method are summarised as:

Algorithm 1 Algorithm for a robust self-aligned framework
for node-node graph contrastive learning.

Input: Sampler function 7 (G, idx), ascent steps M, ascent
step size «, additional augmentations 7,,7g, encoder fy,
projector g,,, and training graph G = {A, X}

1: while not converge do
2: fori=1to N do )
3: Sample two context subgraphs QY) = T(G,1),

géi) = T(G, 1) for each central node
4: endfor ]
5 S=1{(G{",¢")}i=1..N
6:  sampled batch B = {(QW, Qék))} €S
7 Bui= (6"}, B = (6))
8 (X" APy = By = ra(B1)
AN .
9 {(X”, A} = By = 75(By)
10 o« U(—a,a)

11: go <0

12: fort:l...Mdo~ } ~

13: Z, = guo fo (X1+5t—17A1) = guw o fo(B1 +
0i-1) }

14: Zy =g,o0 fe(lfz)

15: 9: < 91+ 31 - Vewl (Z1,Zs)

16: gs < V&g (Zl, ZQ)

17: O =01+ a-g5/ 1195l

18:  end for

19: 0(—0—T~9Mﬁ
200 WEw—T gy,
21: end while

B. Dataset Details

We will introduce the details of all datasets used in exper-
iments. The statistics of datasets are in Table 6. All the
datasets are available on Pytorch Geometry Library (PyG)
[Fey and Lenssen, 2019]

Homophilous datasets We use four citation network
datasets [Sen et al., 2008], Cora, Citeseer , Pubmed and
DBLP. As for these datasets, nodes represent a variety of pa-
pers, and edges represent citation relationships between these
papers. Node features are represented as the bag-of-word
model of the corresponding paper, and the label is the aca-
demic topic of the paper. These four datasets are highly ho-
mophilous graphs that most of edges connect nodes sharing
the same labels. Following GRACE, we also randomly split
the nodes into (10%/10%,/80%) for train/validation/test re-
spectively instead of using the standard fixed splits which are
unreliable for evaluating GNN methods [Shchur ef al., 2018].

Non-homophilous datasets In real-world scenarios, the
pattern “like attracts like” exists in many networks (e.g.,

friendship networks[McPherson et al., 2001], citation net-
works [Ciotti et al., 2016]), but there also exists different pat-
tern as ’opposites attract” (e.g., dating networks or molecular
networks [Zhu et al., 2020b]). We can use edge homophily
ratio h = I{(Z’J):(Z’J)';myi:yj}l to indicate the portion of
edges that connect two nodes with same labels. A graph
is considered to be non-homophilous if &~ < 0.5. Numer-
ous GNN variants may fail on non-homophilous datasets be-
cause the aggregation functions can be considered as feature
smoothing, and feature smoothing will average nodes’ fea-
tures even if they have different labels. In order to verify that
our method is more suitable for non-homophilous graphs, we
also conduct experiments on three non-homophilous datasets
collected by the CMU WebKB project, which are Cornell,
Texas, and Wisconsin. These three datasets are webpage
datasets collected from science departments of correspond-
ing universities, where nodes represent web pages and edges
represent hyperlinks between them. Node features are the
bag-of-words representation of web pages, and these nodes
are manually classified into five categories: Student, Project,
Course, Staff, and Faculty. We use the preprocessed version
in [Pei et al., 2020] with the standard dataset split. The de-
tailed information of datasets is summarized in Table 6.

Inductive learning on large graphs We use two com-
monly used large graphs (Flickr and Reddit) to evaluate our
method under inductive learning setting. Each node in Flickr
represents an uploaded image. Edges are formed between
nodes (images) from the same location, submitted to the
same gallery, group, or set, images sharing common tags,
images taken by friends, etc. Each node contains the 500-
dimensional bag-of-word representation of the images pro-
vided by NUS-wide*. And the labels are generated according
to the tags of the images. Reddit is a social network with Red-
dit posts created in September 2014 which is preprocessed
by [Hamilton ef al., 2017]. In the dataset, each node repre-
sents a post, and edges connect posts if the same user has
commented on both. Each node contains 602-dimensional
off-the-shelf GloVe word embeddings which are constructed
from the post title, content, and comments, along with other
metrics such as post score and the number of comments.
We use the data splits processed by [Hamilton et al., 2017].
Posts in the first 20 days are for training, including 151,708
nodes, and the remaining for testing (with 30% data includ-
ing 23,699 nodes for validation). The inductive setting fol-
lows [Velickovic et al., 2019], validation and test nodes are
invisible to the training algorithm.

Dynamic graph dataset We use one real-world dataset
which is called The Contacts In A Workplace (CIAW)T. It
is a vertex-focused dataset of [35] that contains the temporal
network of contacts between individuals measured in an of-
fice building in France, from June 24, to July 3, 2013. Each
node represents a worker wearing a sensor which can record
the interaction with another worker within 1.5 m. The edges
will be constructed between nodes if they have contacts (in-
teraction lasting more than 20 s). For each 20s interval be-

“https://Ims.comp.nus.edu.sg/research/NUS-WIDE.htm
Thttp://www.sociopatterns.org/datasets/contacts-in-a-workplace/



Hidden Batch Learning Weight Walk

size size rate decay length Epochs Patience Optimizer 7 Del  DPe2 Pf1 Dy2
Cora 128 128 le-2 Se-4 10 500 - SGD 04 02 02 03 03
Citeseer 256 128 le-2 Se-4 10 300 - SGD 07 05 04 05 04
Pubmed 256 256 le-3 Se-4 10 500 - AdamW 0.1 04 0.1 0.0 02
DBLP 256 128 le-3 Se-4 10 500 - AdamW 0.8 01 02 02 03
Flickr 512 128 le-3 Se-4 20 200 - AdamW 0.1 00 02 02 02
Reddit 512 128 le-3 Se-4 20 200 - AdamW 02 04 01 0.0 0.2
Cornell 64 256 le-3 Se-4 10 200 20 SGD 04 02 03 02 03
Wisconsin 64 256 le-3 Se-4 10 200 20 SGD 04 02 03 02 03
Texas 64 256 le-3 Se-4 10 200 20 SGD 04 02 03 02 03
CIAW 128 9 le-2 Se-4 - 200 20 SGD 04 02 03 02 03

Table 5: Hyperparameters specifications

tween June 24, and July 3, 2013, all the contacts occurring
between the surveyed individuals (nodes) have been recorded.
Each node is further characterized by his or her department
name used as their labels. The task is to predict each indi-
vidual’s department by leveraging the historical sequence of
their interactions. For preprocessing CIAW, we downsam-
ple this dynamic graph into 20 discrete snapshots according
to timestamp. The latest two snapshots are used for testing.
Further, we randomly split nodes into 1:9 as training and test-
ing nodes in each individual experiment. Moreover, we ap-
ply Node2vec [Grover and Leskovec, 2016] to generate 64-
dimensional representation for each node by training graphs.
For preprocessing CIAW*, we remove isolated nodes in each
snapshot to simulate the situation of the addition and deletion
of the nodes over time. For the training and testing process,
in a semi-supervised manner, we will use training graphs to
train the encoder through backwarding on labeled training
nodes, and then test the performance of the encoder using
testing nodes in testing graphs. In an unsupervised manner,
we consider the adjacent snapshots as positive views because
the evolution process is generally “smooth”. And the snap-
shots which are far away from the anchor are considered as
negative views. Although we simply use static GNN encoder
with discrete-time paradigms in our work, it can be applied
to temporal GNN encoders with continuous-time paradigms.
We leave this in future work.

Dataset #N #E #F #C H
Cora 2,078 5,278 1,433 7 081
CiteSeer 3,327 4,676 3,703 6 074
PubMed 19,717 44,327 500 3 0.80
DBLP 17,716 105,734 1,639 4 0.83
Cornell 183 280 1,703 5 0.30
Texas 183 295 1,703 5 0.11
Wisconsin 251 466 1,703 5 0.21
Flickr 89,250 899,756 500 7 032
Reddit 231,443 11,606,919 602 41 0.76

CIAW 92 9,827 64 5 -

Table 6: Details of used datasets, where we substitute N for Nodes,
E for Edges, F for Features, C for Classes, H for Homophily ratio.

C. Implementation Details
Model architecture We use two kinds of GNN encoders

following [Zhu et al., 2020c; Velickovic ez al., 2019].  On

small-scale datasets, we adopt two layer GCN as:
GON;(X,A) = o (ﬁ—%iﬁ—%xwi) . (14
H = GCN2(GCN; (X, A),A), 15

where A = A +Iis the adjacency matrix with self loop, and

D is the degree matrix of A. o is an activation function, W
is a trainable linear transformation for input feature X.

As for the large-scale datasets (Flickr and
Reddit), ~we adopt a three-layer = GraphSAGE-
GCN [Hamilton et al., 2017] with residual connections
as the encoder following DGI and GRACE:

MP;(X,A) = D'AXW,; (16)
MP;(X, A) = o (XW}|| MP;(X, A)) 17
H = MP; (MTDQ (ME(X,A),A) ,A). (18)

Evaluation metrics We evaluate the learned encoder as fol-
lows. Firstly, we train the model in an unsupervised man-
ner. Then, we extract node embeddings using the fixed pre-
trained model. Lastly, a linear classifier will be trained on
these embeddings across the training set and give the re-
sults on the test nodes. For four citation networks, we use
an [o-regularization LogisticRegression classifier from Scikit-
Learn [Pedregosa et al., 2011] using the ‘liblinear’ solver fol-
lowing [Zhu et al., 2020c]. For other datasets, we use one
layer MLP through 100 epochs with Adam optimizer. We
train the model for 20 runs and report the average classifi-
cation accuracy or micro-averaged F1 score (on Flickr and
Reddit) along with its standard deviation.

Computer infrastructures specifications For hardwares,
all experiments are conducted on a computer server with eight
GeForce RTX 3090 GPUs with 24GB memory and 64 AMD
EPYC 7302 CPUs. Besides, our models are implemented
by Pytorch Geometric 1.7.0 [Fey and Lenssen, 2019] and Py-
torch 1.8.1 [Paszke et al., 2019]. All the datasets used in our
work are available in PyTorch Geometric libraries.



(a) Raw features (b) Random-init

(c) GRACE (d) RoSA

Figure 4: t-SNE visualization of node embeddings on Cora dataset, (a) is the raw features, (b) depicts features from a randomly initialized
RoSA model, (c) shows embeddings from trained GRACE model, (d) is the result of trained RoSA . The margins of each cluster learned

from RoSA are much wider than the learned GRACE.

Hyperparameters All hyperparameters used in experi-
ments are listed in Table 5. p 1, pe,2,Pf,1,Pf,2 are the prob-
ability parameters that control the extent of data augmenta-
tions like GRACE [Zhu et al., 2020c]. pe 1, pe 2 is used for
controlling the ratio of dropping edges and py 1, py 2 decides
what a fraction of feature dimensions will be masked. For
subsampling, we set the restart ratio as 0.8 on Pubmed and 0.5
on others. For one epoch, we only generate subgraphs for par-
tial central nodes (limited by batch size). All models are ini-
tialized with Glorot initialization [Glorot and Bengio, 2010].
During the training process, we use an early stopping strat-
egy on the observed results of the training loss with specific
patience.

As for unsupervised adversarial training, we adopt that the
inner loop runs 3 times (M = 3) and set step size « as
1073 to implicitly control perturbation budget e. The per-
turbation is not bounded by a definite e. The accumu-
lated gradients for model parameters (6, w) during the inner
loop will be used in the outer update like [Zhu et al., 2020a;
Kong et al., 2020]. In addition, we only add the adversarial
perturbation § to one view rather than two augmented views.
Concerning the order of augmentations, we firstly use sub-
sampling to obtain a number of subgraphs, then edge drop-
ping and feature masking will be applied on subgraphs.
Lastly, an adversarial perturbation will be added to node fea-
tures to improve model robustness.

Regarding sinkhorn algorithm [Cuturi, 2013], we set the iter-
ation number as 5 for computing transportation matrix P with
A equaling to 20 in the regularization term. We find that tun-
ing these two hyperparameters slightly changes performance
because the main aim of energy transmutation is not changed.

D. Additional Experiments

Sensitivity analysis Firstly, we explore the influence of dif-
ferent walk length (steps) in sampling process. We measure
how the performance is affected by varying walk length in
the range of {5, 10, 20, 30, 40, 50}. The results on Cora and
Citeseer dataset are depicted in Figure 5. We get compara-
ble results as the walk length reaches 10. After that, as the
walk length gets larger, the accuracy drops. We guess that is
because larger walk length (bigger subgraph) will introduce
more noises. For instance, the negative samples are prone to
contain more consistent substructures that can be considered
positive signals, thus confusing the model to distinguish be-

Cora
78 —— Citeseer

Cora
78 —+— Citeseer

accuracy
accuracy

74 ///\a
— .
72
5 10 20 30 40 50 1632 64 128 256
walk length the number of subgraphs

Figure 5: Analysis on critical hyperparameters. The left figure
shows the impact of the walk length, the right figure embodies the
influence of subgraph number.

tween positive and negative samples.

Secondly, we test the impact of different number of sub-
graphs trained in each epoch. This factor will determine the
amount of negative samples during training. When the num-
ber reaches around 64, the accuracy becomes stable.

E. Visualization

The visualization of one instance of EMD We visualize
one contrasted pair of Cora in Figure 6. As we can see, with
two non-aligned subgraphs, introducing EMD can lead to a
pseudo alignment process. More specifically, the distribu-
tion transport tends to happen more frequently between nodes
with similar semantic meaning, which helps the model learn

meaningful representations.
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(b) Transportation matrix

Woe ot e e e e e e
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Figure 6: The distance matrix D and transportation matrix I" of two
contrasted views, where grid with high brightness has greater value.
The x-axis means the labels of nodes in the first view and y-axis
means labels in the second view. The energy transfer mostly occurs
between nodes with the same category.



Embedding  visualization In  order to assess
the quality of learned embeddings, we adopt t-
SNE [Van der Maaten and Hinton, 2008] to  visualize
the node embedding on Cora dataset using raw features,
random-init of RoSA, GRACE, and RoSA , where different
classes have different colors in Figure 4. We can observe that
the 2D projection of node embeddings learned by RoSA has
a clear separation of clusters, which indicates the model can
help learn representative features for downstream tasks.
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